Документ подписан простой электронной подписью

Информация о владельце: ФИО: Ковтун Ольга Петровна

Должность: ректор

Дата под**федерамыное государственное бю джетное образовательное учреждение высшего образования** Уникальный программный ключ:

f590ada38fac7f9d3be3160b34c218b72d1975 **Уральский государственный медицинский университет**»

Министерства здравоохранения Российской Федерации

Кафедра общей химии

УТВЕРЖДАЮ

Проректор по образовательной деятельности и молодежной политике Т.В. Бородулина

и одкум 20<u>23</u> г. (печать УМУ)

Фонд оценочных средств по дисциплине КЛИНИЧЕСКИЕ АСПЕКТЫ ФИЗИЧЕСКОЙ И КОЛЛОИДНОЙ ХИМИИ

Специальность: 31.05.03 Стоматология

Уровень высшего образования: специалитет

Квалификация: врач-стоматолог

Фонд оценочных средств по дисциплине «Клинические аспекты физической и коллоидной химии» составлен в соответствии с в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по специальности 31.05.03 Стоматология (уровень специалитета), утвержденного приказом Министерства образования и науки Российской Федерации от 12.08.2020 № 984 и с учетом требований профессионального стандарта «Врач-стоматолог», утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 10.05.2016 № 224 н. (зарегистрирован в Министерстве юстиции РФ 02.06.2016 г. рег. № 42399).

Разработчики: Белоконова Н.А., д.т.н., зав. кафедрой общей химии;

Наронова Н.А., к.п.н., доцент кафедры общей химии;

Тихомирова Е.И., к.х.н., доцент кафедры общей химии.

ФОС рецензирован: Андриановой Г.Н., д.ф.н., проф., декан фармацевтического факультета

1. Кодификатор результатов обучения по дисциплине

компетенций компетенции компе	я Навыки	
	ппавыки	дисциплины
тических даболеваний взрослых со стоматологическим и дасорения да	Навыки лабораторных экспериментов по адсорбции и сталагмометрическому определению поверхностного натяжения жидкостей Навыки работы на рН-метре и фотоэлектроколоримет ре. Навыки работы на фотоэлектроколоримет ре (спектрофотометре). Навыки работы с химической и мерной	дисциплины Устный опрос, тестовые контроли, микроконтроли, билетные контроли, проверка письменных конспектов лекций и отчетов по лабораторным работам, итоговое тестирование с заданиями открытого типа

2. Аттестационные материалы

2.1. Тестовые контроли

Тестовые контроли (ТК) являются формой промежуточной аттестации по дисциплине. Тестовые контроли включены во все дидактические единицы. Время, отводимое на выполнение заданий, от 5 минут до 20 минут, тестовые контроли проводятся на компьютерах во время практических занятий.

Примеры тестовых заданий

ТК Входной контроль (ДЕ1)

1. Рассчитайте концентрацию раствора лимонной кислоты, если на титрование 6 мл этого раствора пошло 5 мл раствора хлорида натрия с концентрацией 0,4 моль экв/л Ответы:

1. 0,33 моль экв/л	2. 1,2 моль экв/л
3. 0,48 моль экв/л	4. 0,4 моль экв/л

2. Молярная концентрация 1 л раствора с массовой долей соляной кислоты 36,5% (р = 1,18 г/мл) составляет ... моль/л

Ответы:

1. 11,8	2. 10
3. 5	4. 5,6

3. 0,25 М раствор салициловой кислоты разбавили в 100 раз. Определите его молярную концентрацию

Ответы:

1. 0,05 моль/л	2. 0,0005 моль/л
3. 0,005 моль экв/л	4. 5*10 ⁻⁵ моль/л

- 4. Буферная система состоит из валериановой кислоты и валериата натрия. Выберите возможное значение pH буферной системы, если pKa = 4.8.
- 5. Каково буферное отношение для аммиачной буферной системы, если она обладает большей буферной емкостью по кислоте?

Ответы:

1. Vc/Vo >1	2. Vc/Vo <1
3. Vc/V _K >1	4. Vc/Vo =1

6. Концентрация ионов S²-(моль ион/л) в насыщенном растворе CdS при 25°C Ответы:

1. 1,2-10,28	2. 2,22-10-14
3. 1,11-10-14	4. 0,6-10 ⁻²⁸

7. Рассчитайте ПК труднорастворимой соли AgCl при смешении 10 мл 0.02 моль/л раствора AgNO3 и 5 мл 0.1 моль/л раствора КС 1

Ответы:

1. 9-10 ⁻³	2. 2,2-10 ⁻²
3. 3-10 ⁻²	4. 4,4-10 ⁻⁴

8. Будет ли осадок иодида серебра растворяться в хлоруксусной кислоте?

Ответы:

1. Образуется равновесная система	2. Нет, Кр>1
3. Het, Kp <1	4. Да, Кр>1

9. Для повышения температуры кипения раствора на 1,04 0 С (Кэб=0,52 град. кг/моль) необходимо, чтобы концентрация растворенного в нем неэлектролита составляла моль/кг

Ответы:

1. 0,5	2. 0,2
3. 1	4. 2

10. Раствор, содержащий 9,2г этилового спирта в 200г воды (Ккр=1,86 град. кг/моль) замерзает при ⁰C

Ответы:

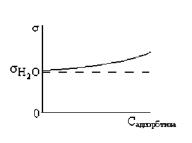
1. 0,186	2. 1,86
30,186	41,86

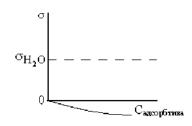
11. Если рН желчи равен 7, то

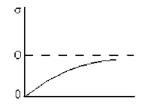
Ответы:

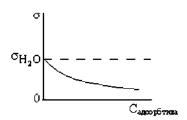
- :					
	1. C (OH ⁻) = $2.47*10^{-7}$ моль ион/л	2. pOH = 7			
	3. C (OH $^{-}$) = 10^{-7} моль ион/л	4. pH+ pOH = 14			

ТК8 по теме «Поверхностные явленияю Адсорбция» (ДЕ1)


- 1. Укажите единицу измерения энергии поверхностного натяжения жидкой фазы:
 - **1.1.** $Дж/м^2$
- **1.2.** H/M^2
- **1.3.** моль/м²
- **1.4.** моль/кг
- 2. Какая величина в уравнении адсорбции Гиббса называется поверхностной активностью:


2.1.
$$-\frac{d\sigma}{dC}$$


$$2.2.d\sigma \cdot \frac{C}{RT}$$


2.3.
$$-\frac{d\sigma}{RT}$$

2.4.
$$-\frac{C}{dC}$$

- **5.** Какое значение о соответствует повышенному по сравнению с нормой содержанию солей желчной кислоты в моче ($\sigma_{\text{мочи}}$ в норме 57-68 Эрг/см²)
- 6. Величина адсорбции на поверхности жидкой фазы рассчитывается по уравнению:

6.1.
$$mg = \sigma \cdot 2\pi r$$
 6.2. $\Gamma = \Gamma_{\infty} \cdot \frac{C}{C + B}$

$$\Gamma = -\frac{d\sigma}{dC} \cdot \frac{C}{RT}$$
 6.4. $\Gamma = \Gamma_{\infty} \cdot \frac{P}{P + B}$

7. Небольшое изменение какого из факторов наиболее сильно влияет на σ воды:

7.1. добавка ПАВ

7.2. добавка ПИАВ

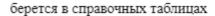
7.3. давление газа

7.4. температура

8. Какая схема иллюстрирует избирательную адсорбцию в водном растворе на твердом сорбенте BaSO₄:

8.1.
$$SO_4^{2^{-}} SO_4^{2^{-}}$$
 8.2. $K^+ K^+ E^{BaSO_4} K^+ K^+ SO_4^{2^{-}}$ 8.3. $Na_-^+ Na_-^+$ 8.4.

9.Укажите пару «растворитель + адсорбент», необходимые для полного разделения смеси твердых дифильного неполярного веществ, исходя из следующего условия: растворитель растворяет оба вещества, а на твердом адсорбенте полностью адсорбируется только одно из них. Смесь



Вариант	10.1.	10.2.	10.3.	10.4.
Растворитель	\oplus	Θ	P	
Адсорбент	мел	уголь	мел	мел

10. Закончите схему адсорбции. Укажите, адсорбция - полная или неполная.

мел +
$$+$$
 $+$ $+$ $+$ $+$ $+$ адсорбент адсорбтив растворитель

11. Каким образом определяется величина адсорбции на поверхности твердого адсорбента:

 $\Gamma = \Gamma_{\infty} \frac{C}{C + B}$ рассчитывается по уравнению Лэнгмюра: $\Gamma = -\frac{d\sigma}{dC} \cdot \frac{C}{RT}$ рассчитывается по уравнению Гиббса: рассчитывается по уравнению: $mg = \sigma \cdot 2\pi r$

- ТК по теме «Физико-химические свойства витаминов» (ДЕ1) 1 Почему при чрезмерном употреблении витаминов А, Е накапливаются в организме и оказывают негативное влияние? 1) Жирорастворимые, поэтому растворяются в липидах. 2) С липидными компонентами мембран образуют комплексные соединения. 3) Образуют ГДС в организме. 2. Витамины - коферменты: 1) B1, B2, B6, B12, PP, A, K 2) Все водорастворимые 3) B1, B12, A, D, K, C
- 3. Водорастворимые витамины антиоксиданты
 - 1) F,E
 - 2) F,D
 - 3) K,D
- 4. Жирорастворимые витамины –антиоксиданты
 - 1) F,E
 - 2) F,D
 - 3) K,D
- 5. Выберите витамин, в структуру которого входит пиримидиновые и тиазоловые кольца $1)B_1$
 - 2)A
 - $3)B_2$
 - $4)B_3$
 - 5)B₁₂
- 3. Выберите витамин, в структуру которого входит бензольные пиримидиновые кольца
 - 1) B_2 2) B₃
- 3) PP
- 4) B₆ 5) K
- Выберите витамин, недостаточность которого приводит к повреждению зрения
 - 2) E 3) PP 4) B_6 5) B_{12}
- Выберите витамин, который приводит к нарушению репродуктивной функции у мужчин и 5. женщин.
 - 1) A 2) PP $3) B_6$ 4) B_{12}
- Выберите витамин, который приводит к остеопорозу 6.
 - 1) D
- 3)F
 - 4) A
- 5) B₁₂
- 7. Выберите витамин, который приводит к поражению ЦНС, дерматитам 4) PP 5) B_{12}
 - 1) B_6
- 2) B₂
- 3) B_1

ТК по теме «Комплексные соединения» (ДЕ1)

1. Степень окисления Pt +4, заряд комплексного иона

1) 1-	2	2) 4+	3)	2-	4) 3-	
2. Стег	пень он	кисления	я компле	ексообраз	вователя в ко	омплексном соединении [CrCl(NH ₃) ₄]Cl ₂
равна						
	1) +2	2) +3	3) +4	4) +1		
3.	_	динацио Сl ₄] равн		сло цент	рального ио	на - комплексообразователя в комплексном соединении
1 14221 0	(011)20	714] P u bir	O			
1) 4	2) 2	3) 6	4) 8		
4.	-		ействии ить соед	,) ₃ +NaSCN, 1	координационное число комплексообразователя равно 6,
		[Fe(SCN				3) $Na_3[Fe(SCN)_6]$
		Na(SCN	. =			4)Fe ₃ [Na(SCN) ₆] ₃
5.		- '		ту компл	ексным ион	ом и ионами внешней среды
			толярная		2) ионная	
		одная с	_		 ковален 	
) A				СВЯЗЬ	
6.	Форм	іупа ком	плексно	го соели		и́ тетрародонидодиамминхромат (+3)
	- °F	- 5			r	· · · · · · · · · · · · · · · · · · ·
	1)Ba[Cr(SCN) ₄ (NH3) ₂	1	5)	$Ba[Cr(CN)_4(NH3)_2]$
		Cr(CN) ₄	, , –)Ba[Cr(SCN) ₄ (NH3) ₂] ₂
	, .		, ,23		,	7-3-
7.	Назва	ание ком	плексно	го соеди	нения Са[А	$I(OH)_{5}H_{2}O$
					кальций (+2	· · · · · · -
				•	юминат (+3	
			•	цроксоал	` '	,
				аалюмин		
8.		-			1 1	иения из следующих частиц Co^{-3+} $CN^{}$ Na $^{+}$
	-	-		сло равно		
						с, моноядерное
						, моноядерное
						е, моноядерное
	4)Na[$Co(Cn)_6$] катион	ное, циа	нокомплекс,	, полиядерное
9. ypan						ьей ступени
			\leftrightarrow Zn ²⁺ -		_	
	2) [.	Zn(OH) ₄	$[]^{2} \leftrightarrow \mathbb{Z}n^{2}$	²⁺ + 4OH		
	3) [.	Zn(OH)]	$_{4}^{2} \rightarrow [Zn$	$(OH)_3$]- \dashv	- OH	
	4) [$Zn(OH)_2$	$[Z]^0 \leftrightarrow [Z]$	nOH] ++	OH -	
10. Ст	епень,	в которо	ой входи	т концен	трация лига	анда в выражении константы нестойкости соединения
[Zn(NI	$H_3)_4$ Cl	2				
	1) 1					
	2) 2					
	3) 4					
	4) 6					
					_	ормируются случайным образом из банка тестов. В
COOTRE	тствии	ге БРС і	по лисці	иппине (а	ем п 3): опе	нка ставится в баллах (от 3 ло 5 баллов) в соответствии с

соответствии с БРС по дисциплине (см. п.3): оценка ставится в баллах (от 3 до 5 баллов) в соответствии с количеством правильных ответов. Менее 55% правильных ответов - не зачет, от 55% до менее 75% - 3

3.1. Билетные контроли

Билетные контроли (БК) являются формой промежуточной аттестации, проводятся в письменно во время практического занятия.

Примеры билетных контролей.

Домашнее задание БК «Концентрации лекарственных средств» (ДЕ1)

Можно или нет давать ребенку возрастом 5 лет по 1 столовой ложке объемом 20мл препарата бромида натрия с массовой долей вещества 1 % 2 раза в день (плотность раствора принять за 1г/мл). Предельная суточная норма потребления для ребенка 5 лет 0,25г.

Билетный контроль по теме «Коллоидные дисперсные системы (КДС) (мицелла)»(ДЕ1)

Частицы коллоидного раствора сульфата кальция, полученного смешением равных объемов CaC12 и Na2SO4, перемещаются в электрическом поле к катоду. Одинаковы ли концентрации исходных растворов? Ответ поясните на конкретном примере. Какие вещества снизят устойчивость КДС и почему? Какие вещества повысят устойчивость КДС и почему?

Итоговый билетный контроль(ИБК) (ДЕ2)

1.1. Составьте комплексное соединение, назовите его, укажите тип, покажите состояние в растворе, напишите выражение для константы нестойкости.

Co³⁺, CN⁻, Na⁺

K.4. = 6

- 1.2. Будет ли устойчиво комплексное соединение в присутствии аммиака.
- 2. При сталагмометрическом определении поверхностного натяжения растворов некоторых веществ получены следующие результаты: раствор №1— 84 капли, раствор №2 51 капля, раствор №3 78 капель, раствор №4 70 капель, для воды 65 капель. Определите поверхностное натяжение этих растворов, считая, что их плотности одинаковы, (сто = $72.5 \cdot 10^{-3} \, \text{Дж/м}^2$ и укажите в каких растворах находились ПАВ или ПИВ.
- 3. В 80 мл раствора мочевины с концентрацией 0,36 ммоль/л внесли 4 г активированного угля. В результате концентрация растворенного вещества снизилась до 0,12 ммоль/л. Вычислите величину адсорбции мочевины в моль/г. Изобразите схему адсорбции.

Методика оценивания: в соответствии с БРС по дисциплине (см. п.3). За ДЗ «Концентрации лекарственных средств» 1-2 балла. БК КДС (мицелла) от 1 до 2 баллов. ИБК (ИТК) оценивается в Збалла. Оценка за решение задачи ставится в баллах в соответствии со следующими критериями. Максимальный балл - ответ на вопросы задачи дан правильно. Объяснение хода её решения подробное, последовательное, грамотное, с теоретическими обоснованиями (в том числе из лекционного курса); ответы на дополнительные вопросы верные, чёткие. Средний балл - ответ на вопросы задачи дан правильно. Объяснение хода её решения подробное, но недостаточно логичное, с единичными ошибками в деталях, некоторыми затруднениями в теоретическом обосновании (в том числе из лекционного материала); ответы на дополнительные вопросы верные, но недостаточно чёткие. Минимальный балл - ответы на вопросы задачи даны правильно. Объяснение хода ее решения недостаточно полное, непоследовательное, с ошибками, слабым теоретическим обоснованием (в том числе лекционным материалом); ответы на дополнительные вопросы недостаточно четкие, с ошибками в деталях. Оценка «неудовлетворительно»: ответы на вопросы задачи даны неправильно. Объяснение хода её решения дано неполное, непоследовательное, с грубыми ошибками, без теоретического обоснования; ответы на дополнительные вопросы неправильные (отсутствуют).

Методика балльно-рейтинговой системы оценивания учебных достижений студентов по учебной дисциплине

Общие положения

- 1.1. Настоящая Методика балльно-рейтинговой системы оценивания учебных достижений студентов по дисциплине «Клинические аспекты физической и коллоидной химии» разработана в соответствие с Положением о балльно-рейтинговой системе оценивания учебных достижений студентов УГМУ, принятой на заседании Учёного совета 28.08.2019 г. (протокол № 1) и утверждённой приказом ректора № 445-р от 03.03.2019 г.
- 1.2. Кафедра исходит из того, что балльно-рейтинговая система оценивания учебных достижений является основой для получения зачета и текущего контроля знаний студентов.
- 1.3. В соответствии с настоящей Методикой преподаватели кафедры оценивают знания студентов на каждом практическом занятии и в конце занятия информируют студентов о его результатах.

Порядок определения дисциплинарных модулей

- 2.1. В учебной дисциплине «Клинические аспекты физической и коллоидной химии» трудоемкость дисциплины составляет: 36 часов (10 часов лекций, 18 часов практические занятия 8 часов самостоятельной работы) и время учебных занятий продолжается в течение одного (весеннего) семестра и заканчивается зачетом.
- 2.2. Выделен один дисциплинарный модуль. Итоговый рейтинг по дисциплине выводится по средним результатам баллов, полученных в семестре.
- 2.3. После окончания дисциплинарного модуля студент имеет право, при проведении преподавателем текущих консультаций, на добор баллов путём отработки пропущенных тем практических и лабораторных занятий, вошедших в предыдущий модуль, а также путём выполнения заданий по пропущенным рубежным контролям и т.п. В связи с этим, текущая рейтинговая оценка по предыдущему модулю может изменяться, и преподаватель вправе вносить в журнал текущей успеваемости соответствующие исправления с указанием даты и балла.

Алгоритм определения рейтинга студента по дисциплине в семестре

- 3.1. Активность студента на практических (семинарских) занятиях оценивается в рейтинговых баллах. Посещение практического занятия оценивается в 1 балла. Каждый краткий устный ответ студента или развёрнутый ответ на практическом занятии может быть оценен дополнительными баллами. При этом учитывается качество ответа, использование дополнительной литературы и т.п.
- 3.2. Текущие контроли, а также итоговые контроли после каждого модуля осуществляется в письменной форме или в форме тестирования.
- 3.3. Текущие и итоговые контроли осуществляются в течение семестра, в соответствии с календарно-тематическим планом (КТП), утверждённым на заседании кафедры. КТП доступен для студентов на сайте и стенде кафедры.
- 3.4. Для учебно-методического обеспечения реализации балльно-рейтинговой системы оценивания учебных достижений студентов внесены коррективы в учебно-методические комплексы дисциплин кафедры.
- 3.5.1. В рабочей программе дисциплины «Клинические аспекты физической и коллоидной химии» обозначен 1 дисциплинарный модуль и 1 дидактическая единица:

№	No	Наименование	В том числе
дисциплинарного	дидактической	дидактической единицы	
модуля	единицы	(ДЕ, темы)	

			Лекции	Практ. Занятия / лаборат. работы
1. Клинические аспекты физической и коллоидной химии	ДЕ 1	Адсорбция на жидкой и твердой поверхностях. Лигандообменные равновесия и процессы, протекающие в организме в норме и патологии. КДС и ГДС. Физико-химические методы исследования и диагностики	10 ч	18ч

3.5.2. Диапазоны рейтинговых баллов по дисциплинарному модулю с выделением рейтинговых баллов за каждый вид учебной работы студента.

Продолжительность изучения дидактической единицы ДЕ 1 9 недель

Вид контроля	Вид учебн. работы и форма текущ. контроля	Минимальное кол-во баллов	Максимальное кол-во баллов
	Практические занятия		
	OBP	1,0	2,0
	Комплексные соединения. Состав и свойства.	1,0	2,0
	Лабораторные работы:		
Текущий		2	3
	№1 «Кондуктометрия.		
контроль	Приготовление растворов хлорида натрия»		
	мтрил» №2 Адсорбция на жидкой	2	
	поверхности ПАВ, ПИАВ	2	3
	№ 3 Определение ККМ в растворе		
	ПАВ	2	3
	№4 Адсорбция на твердой	2	3
	поверхности		
	№5 Дисперсные системы. КДС.	2	3
	№6. Определение кальция методом	2	3
	комплексонометрии	2	3
	Тестирование:		
	Задачи "бромизм"	3	5
	Адсорбция на жидкой поверхности	3	5
	Поверхностные явления. Адсорбция	5	7

Комплексные соединения	4	6
ТК КДС (мицелла)	3	5
ДЗ ОВР	1	2
БК ОВР	3	5
БК КДС (мицелла)	3	5
MK "KC"	3	5
Лекции	5	10
добор баллов	3	18
Итого:	50	100

3.6.Порядок и сроки добора баллов

- 3.6.1. После подведения итогов текущего контроля знаний студентов и выставления рейтинга студенту по дисциплине в семестре данная информация доводится до сведения студентов на последнем практическом занятии, на информационном стенде кафедры, сайте УГМУ и т.п.
- 3.6.2. До начала экзаменационной сессии и до даты сдачи в деканат журнала посещаемости и текущей успеваемости студент вправе добрать баллы до минимальной суммы рейтинговых баллов (50 рейтинговых баллов), при которой может быть поставлен зачёт.
- 3.6.3. Добор рейтинговых баллов может проходить в форме тестового контроля знаний студентов, выполнения самостоятельной работы по заданию ведущего преподавателя, отработок пропущенных практических занятий и предоставления письменно выполненных заданий и/или собеседования.
 - 3) Алгоритм определения итогового рейтинга студента по учебной дисциплине
- 3.1. Итоговый рейтинг студента по учебной дисциплине определяется в результате суммирования рейтинговых баллов, набранных студентом по дисциплине в течение семестра по результатам текущих контролей (Рейтинг студента в семестре).
- 3.2. Полученный студентами зачет и итоговый рейтинговый балл по дисциплине выставляются в зачётную книжку студента и экзаменационную ведомость.

Рецензия

на Фонд оценочных средств дисциплины Б1.В.ОД.З «Клинические аспекты физической и коллоидной химии » вариативной части для обучающихся по специальности 31.05.03 «Стоматология»

Фонд оценочных средств по дисциплине «Клинические аспекты физической и коллоидной химии» составлен в соответствии с в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по специальности 31.05.03 Стоматология (уровень специалитета), утвержденного приказом Министерства образования и науки Российской Федерации от 12.08.2020 № 984 и с учетом требований профессионального стандарта «Врач-стоматолог», утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 10.05.2016 № 224 н. (зарегистрирован в Министерстве юстиции РФ 02.06.2016 г. рег. № 42399).

Дисциплина «Клинические аспекты физической и коллоидной химии» преподается на первом курсе во втором семестре в рамках дисциплин Вариативной части. Общая трудоемкость дисциплины 36 часа (10 часов лекций, 18 часов практические занятия, 8 часов зачет).

Разработчики:

Белоконова Н.А., д.т.н., зав. кафедрой общей химии;

Наронова Н.А., к..н., доцент кафедры общей химии;

Тихомирова Е.И., к.х.н., доцент кафедры общей химии.

В рецензируемом документе четко указано, какие знания, умения и навыки формируются при изучении каждого раздела данной дисциплины.

Полно представлены аттестационные материалы в виде заданий для выполнения самостоятельной работы, билетов для письменных контролей и компьютерных тестов по каждому разделу изучаемой дисциплины.

Дан алгоритм определения рейтинга студентов, представлена методика БРС для оценки знаний, указан порядок предоставления возможности дополнительного набора баллов для получения зачета.

В целом данный Фонд оценочных средств отвечает требованиями, предъявляемым по специальности ««Клинические аспекты физической и коллоидной химии», в соответствии с ФГОС 3++, и может быть рекомендован для утверждения.

